Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nat Commun ; 13(1): 1937, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1783981

ABSTRACT

In type II CRISPR systems, the guide RNA (gRNA) comprises a CRISPR RNA (crRNA) and a hybridized trans-acting CRISPR RNA (tracrRNA), both being essential in guided DNA targeting functions. Although tracrRNAs are diverse in sequence and structure across type II CRISPR systems, the programmability of crRNA-tracrRNA hybridization for Cas9 is not fully understood. Here, we reveal the programmability of crRNA-tracrRNA hybridization for Streptococcus pyogenes Cas9, and in doing so, redefine the capabilities of Cas9 proteins and the sources of crRNAs, providing new biosensing applications for type II CRISPR systems. By reprogramming the crRNA-tracrRNA hybridized sequence, we show that engineered crRNA-tracrRNA interactions can not only enable the design of orthogonal cellular computing devices but also facilitate the hijacking of endogenous small RNAs/mRNAs as crRNAs. We subsequently describe how these re-engineered gRNA pairings can be implemented as RNA sensors, capable of monitoring the transcriptional activity of various environment-responsive genomic genes, or detecting SARS-CoV-2 RNA in vitro, as an Atypical gRNA-activated Transcription Halting Alarm (AGATHA) biosensor.


Subject(s)
Biosensing Techniques , COVID-19 , CRISPR-Cas Systems/genetics , Humans , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics
2.
TrAC Trends in Analytical Chemistry ; : 116507, 2021.
Article in English | ScienceDirect | ID: covidwho-1559776

ABSTRACT

Wastewater surveillance is a powerful tool to understand community profiling in terms of health monitoring. Tracking biomarkers such as inorganic and organic pollutants, drugs, and pathogens in wastewater gives a general idea about the lifestyle and health status of a population as well as pollutant exposure caused by various toxic chemicals. Notably, tracing pathogenic clues could help predict and prevent disease outbreaks such as the ongoing COVID-19 pandemic in communities. To this end, developing portable biosensing platforms will facilitate the on-site monitoring of water contamination without requiring complex equipment. New technological developments in synthetic biology have advanced both synthetic gene circuit-based biosensors and new in vitro detection strategies coupled with easy-to-interpret visualization methods. Here, we summarize the latest advances in synthetic biology tools and discuss how they enable the development of rapid, low-cost, ease-to-use and field-deployable biosensors for monitoring a variety of water contaminants and health-related biomarkers in the environment.

3.
Front Med (Lausanne) ; 8: 616106, 2021.
Article in English | MEDLINE | ID: covidwho-1145566

ABSTRACT

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, which has reached 28 million cases worldwide in 1 year. The serological detection of antibodies against the virus will play a pivotal role in complementing molecular tests to improve diagnostic accuracy, contact tracing, vaccine efficacy testing, and seroprevalence surveillance. Here, we aimed first to evaluate a lateral flow assay's ability to identify specific IgM and IgG antibodies against SARS-CoV-2 and second, to report the seroprevalence estimates of these antibodies among health care workers and healthy volunteer blood donors in Panama. We recruited study participants between April 30th and July 7th, 2020. For the test validation and performance evaluation, we analyzed serum samples from participants with clinical symptoms and confirmed positive RT-PCR for SARS-CoV-2, and a set of pre-pandemic serum samples. We used two by two table analysis to determine the test positive and negative percentage agreement as well as the Kappa agreement value with a 95% confidence interval. Then, we used the lateral flow assay to determine seroprevalence among serum samples from COVID-19 patients, potentially exposed health care workers, and healthy volunteer donors. Our results show this assay reached a positive percent agreement of 97.2% (95% CI 84.2-100.0%) for detecting both IgM and IgG. The assay showed a Kappa of 0.898 (95%CI 0.811-0.985) and 0.918 (95% CI 0.839-0.997) for IgM and IgG, respectively. The evaluation of serum samples from hospitalized COVID-19 patients indicates a correlation between test sensitivity and the number of days since symptom onset; the highest positive percent agreement [87% (95% CI 67.0-96.3%)] was observed at ≥15 days post-symptom onset (PSO). We found an overall antibody seroprevalence of 11.6% (95% CI 8.5-15.8%) among both health care workers and healthy blood donors. Our findings suggest this lateral flow assay could contribute significantly to implementing seroprevalence testing in locations with active community transmission of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL